Stanford researchers show that mealworms can safely consume toxic additive-containing plastic

Authored by news.stanford.edu and submitted by mvea
image for Stanford researchers show that mealworms can safely consume toxic additive-containing plastic

December 19, 2019 Stanford researchers show that mealworms can safely consume toxic additive-containing plastic Mealworms are not only able to eat various forms of plastic, as previous research has shown, they can consume potentially toxic plastic additives in Styrofoam with no ill effects, a new study shows. The worms can then be used as a safe, protein-rich feed supplement. View video here. By Rob Jordan

Stanford Woods Institute for the Environment Tiny mealworms may hold part of the solution to our giant plastics problem. Not only are they able to consume various forms of plastic, as previous Stanford research has shown, they can eat Styrofoam containing a common toxic chemical additive and still be safely used as protein-rich feedstock for other animals, according to a new Stanford study published in Environmental Science & Technology. A new Stanford study shows mealworms can eat Styrofoam containing a common toxic chemical additive and still be safely used as protein-rich feedstock for other animals. (Image credit: Getty Images) The study is the first to look at where chemicals in plastic end up after being broken down in a natural system – a yellow mealworm’s gut, in this case. It serves as a proof of concept for deriving value from plastic waste. “This is definitely not what we expected to see,” said study lead author Anja Malawi Brandon, a PhD candidate in civil and environmental engineering at Stanford. “It’s amazing that mealworms can eat a chemical additive without it building up in their body over time.” In earlier work, Stanford researchers and collaborators at other institutions revealed that mealworms, which are easy to cultivate and widely used as a food for animals ranging from chickens and snakes to fish and shrimp, can subsist on a diet of various types of plastic. They found that microorganisms in the worms’ guts biodegrade the plastic in the process – a surprising and hopeful finding. However, concern remained about whether it was safe to use the plastic-eating mealworms as feed for other animals given the possibility that harmful chemicals in plastic additives might accumulate in the worms over time. “This work provides an answer to many people who asked us whether it is safe to feed animals with mealworms that ate Styrofoam”, said Wei-Min Wu, a senior research engineer in Stanford’s Department of Civil and Environmental Engineering who has led or co-authored most of the Stanford studies of plastic-eating mealworms. Styrofoam solution Brandon, Wu and their colleagues looked at Styrofoam or polystyrene, a common plastic typically used for packaging and insulation, that is costly to recycle because of its low density and bulkiness. It contained a flame retardant called hexabromocyclododecane, or HBCD, that is commonly added to polystyrene. The additive is one of many used to improve plastics’ manufacturing properties or decrease flammability. In 2015 alone, nearly 25 million metric tons of these chemicals were added to plastics, according to various studies. Some, such as HBCD, can have significant health and environmental impacts, ranging from endocrine disruption to neurotoxicity. Because of this, the European Union plans to ban HBCD, and U.S. Environmental Protection Agency is evaluating its risk. Mealworms in the experiment excreted about half of the polystyrene they consumed as tiny, partially degraded fragments and the other half as carbon dioxide. With it, they excreted the HBCD – about 90 percent within 24 hours of consumption and essentially all of it after 48 hours. Mealworms fed a steady diet of HBCD-laden polystyrene were as healthy as those eating a normal diet. The same was true of shrimp fed a steady diet of the HBCD-ingesting mealworms and their counterparts on a normal diet. The plastic in the mealworms’ guts likely played an important role in concentrating and removing the HBCD. The researchers acknowledge that mealworm-excreted HBCD still poses a hazard, and that other common plastic additives may have different fates within plastic-degrading mealworms. While hopeful for mealworm-derived solutions to the world’s plastic waste crisis, they caution that lasting answers will only come in the form of biodegradable plastic replacement materials and reduced reliance on single-use products. “This is a wake-up call,” said Brandon. “It reminds us that we need to think about what we’re adding to our plastics and how we deal with it.” Co-authors of the study include Craig Criddle, a professor of civil and environmental engineering in Stanford’s School of Engineering, a senior fellow at the Stanford Woods Institute for the Environment, a member of Bio-X and an affiliate of the Precourt Institute for Energy. Other co-authors of the study include Sahar El Abbadi, a civil and environmental engineering graduate student; Uwakmfon Ibekwe, an undergraduate student in civil and environmental engineering at the time of the research and current graduate student at Carnegie Mellon University; and YeoMyoung Cho, a senior research engineer in civil and environmental engineering. The research was funded by the Stanford Woods Institute for Environment, the National Science Foundation and the Stanford Interdisciplinary Graduate Fellowship. To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest. -30-

SausageTaxi on December 21st, 2019 at 21:49 UTC »

Hooray we got in one more “worms can eat plastic” post before the year ended

guttekev on December 21st, 2019 at 17:59 UTC »

I know the lead author of this study - couple things based on some comments:

1) The authors are actually quite conservative - “the mealworms are the solution” stuff is the press department, they actually expected to see accumulation of these things and were worried and thus were quite surprised when they could not find evidence of it bioaccumulating. But also they are very clear it should be studied more before implemented.

2) The carbon from the plastic actually does get incorporated into the mealworm (ie they do actually “eat” it), they don’t just poop it out the other end. Lots of it either gets incorporated into the worm or reduced to co2 (which is a form of digestion).

3) They have found that the mealworms can eat polystyrene and polyethylene and are looking at others. So they may not be able to eat all plastics but can eat at least two fairly structurally different plastics.

4) The author 1000% thinks reducing plastic production/waste is as important or more important than getting rid of existing plastic, but thinks you need both (it’s not an either/or situation).

TheOriginalBigApp on December 21st, 2019 at 14:22 UTC »

Mealworms ingesting plastics...How does this affect the things that eat the mealworms?