Emmy Noether, the Most Significant Mathematician You’ve Never Heard Of

Authored by nytimes.com and submitted by CryptoCreativity

Ransom Stephens, a physicist and novelist who has lectured widely on Noether, said, “You can make a strong case that her theorem is the backbone on which all of modern physics is built.”

Noether came from a mathematical family. Her father was a distinguished math professor at the universities of Heidelberg and Erlangen, and her brother Fritz won some renown as an applied mathematician. Emmy, as she was known throughout her life, started out studying English, French and piano — subjects more socially acceptable for a girl — but her interests soon turned to math. Barred from matriculating formally at the University of Erlangen, Emmy simply audited all the courses, and she ended up doing so well on her final exams that she was granted the equivalent of a bachelor’s degree.

She went on to graduate school at the University of Göttingen before returning to the University of Erlangen, where she earned her doctorate summa cum laude. She met many of the leading mathematicians of the day, including David Hilbert and Felix Klein , who did for the bottle what August Ferdinand Möbius had done for the strip. Noether’s brilliance was obvious to all who worked with her, and her male mentors repeatedly took up her cause, seeking to find her a teaching position — better still, one that paid.

“I do not see that the sex of the candidate is an argument against her,” Hilbert said indignantly to the administration at Göttingen, where he sought to have Noether appointed as the equivalent of an associate professor. “After all, we are a university, not a bathhouse.” Hilbert failed to make his case, so instead brought her on staff as a more or less permanent “guest lecturer”; and Noether, fittingly enough, later took up swimming at a men-only pool.

At Göttingen, she pursued her passion for mathematical invariance, the study of numbers that can be manipulated in various ways and still remain constant. In the relationship between a star and its planet, for example, the shape and radius of the planetary orbit may change, but the gravitational attraction conjoining one to the other remains the same — and there’s your invariance.

In 1915 Einstein published his general theory of relativity. The Göttingen math department fell “head over ear” with it, in the words of one observer, and Noether began applying her invariance work to some of the complexities of the theory. That exercise eventually inspired her to formulate what is now called Noether’s theorem, an expression of the deep tie between the underlying geometry of the universe and the behavior of the mass and energy that call the universe home.

What the revolutionary theorem says, in cartoon essence, is the following: Wherever you find some sort of symmetry in nature, some predictability or homogeneity of parts, you’ll find lurking in the background a corresponding conservation — of momentum, electric charge, energy or the like. If a bicycle wheel is radially symmetric, if you can spin it on its axis and it still looks the same in all directions, well, then, that symmetric translation must yield a corresponding conservation. By applying the principles and calculations embodied in Noether’s theorem, you’ll see that it is angular momentum, the Newtonian impulse that keeps bicyclists upright and on the move.

Newsletter Sign Up Continue reading the main story Please verify you're not a robot by clicking the box. Invalid email address. Please re-enter. You must select a newsletter to subscribe to. Sign Up You will receive emails containing news content , updates and promotions from The New York Times. You may opt-out at any time. You agree to receive occasional updates and special offers for The New York Times's products and services. Thank you for subscribing. An error has occurred. Please try again later. View all New York Times newsletters.

Some of the relationships to pop out of the theorem are startling, the most profound one linking time and energy. Noether’s theorem shows that a symmetry of time — like the fact that whether you throw a ball in the air tomorrow or make the same toss next week will have no effect on the ball’s trajectory — is directly related to the conservation of energy, our old homily that energy can be neither created nor destroyed but merely changes form.

Advertisement Continue reading the main story

The connections that Noether forged are “critical” to modern physics, said Lisa Randall, a professor of theoretical particle physics and cosmology at Harvard. “Energy, momentum and other quantities we take for granted gain meaning and even greater value when we understand how these quantities follow from symmetry in time and space.”

Dr. Randall, the author of the newly published “Knocking on Heaven’s Door,” recalled the moment in college when she happened to learn that the author of Noether’s theorem was a she. “It was striking and even exciting and inspirational,” Dr. Randall said, admitting, “I was surprised by my reaction.”

For her part, Noether left little record of how she felt about the difficulties she faced as a woman, or of her personal and emotional life generally. She never married, and if she had love affairs she didn’t trumpet them. After meeting the young Czech math star Olga Taussky in 1930, Noether told friends how happy she was that women were finally gaining acceptance in the field, but she herself had so few female students that her many devoted pupils were known around town as Noether’s boys.

Noether lived for math and cared nothing for housework or possessions, and if her long, unruly hair began falling from its pins as she talked excitedly about math, she let it fall. She laughed often and in photos is always smiling.

When a couple of students started showing up to class wearing Hitler ’s brownshirts, she laughed at that, too. But not for long. Noether was one of the first Jewish scientists to be fired from her post and forced to flee Germany. In 1933, with the help of Einstein, she was given a job at Bryn Mawr College, where she said she felt deeply appreciated as she never had been in Germany.

o11c on June 20th, 2018 at 21:13 UTC »

“I do not see that the sex of the candidate is an argument against her,” Hilbert said indignantly to the administration at Göttingen, where he sought to have Noether appointed as the equivalent of an associate professor. “After all, we are a university, not a bathhouse.” Hilbert failed to make his case, so instead brought her on staff as a more or less permanent “guest lecturer”; and Noether, fittingly enough, later took up swimming at a men-only pool.

jurvekthebosmer on June 20th, 2018 at 21:05 UTC »

That obituary author? Albert Einstein

Frptwenty on June 20th, 2018 at 18:42 UTC »

jσ = [ ∂L/∂φA 𝓛ₓ φA - L Xσ ] - (∂L/∂φA) ψA

⟹ ∂/∂xσ jσ = 0

Jeez, women, right?