Wandering star shook up the prehistoric solar system

Authored by astronomy.com and submitted by clayt6

Around 70,000 years ago, a supervolcano named Toba erupted, blowing roughly 670 cubic miles (2,800 cubic kilometers) of vaporized rock and debris into the air. This is thought to have caused a massive struggle for humanity, ultimately leading to a population bottleneck that whittled down our numbers to as few as 1,000 reproductive adults. According to a 2015 study, during this pivotal point in human history, a small reddish star also was likely passing within a light-year of the Sun, just skimming the outer rim of the Oort cloud (the extended shell of over a trillion icy objects that is thought to cocoon the outer solar system).Previously, astronomers believed that this wandering star — dubbed Scholz’s star — passed relatively peacefully by the Oort cloud, influencing very few (if any) outer solar system objects. But, according to a new study, researchers now think that Scholz’s star may have caused more of a ruckus than we initially gave it credit for.In the study , published February 6 in Monthly Notices of the Royal Astronomical Society: Letters, researchers analyzed the orbital evolution of 339 known minor objects (like asteroids and comets) with hyperbolic orbits that will eventually usher them out of the solar system. By running full N-body simulations with these objects in reverse for 100,000 years, the team was able to accurately estimate the point in the sky where each body appears to have come from.Surprisingly, the team found that over 10 percent of the objects (36) originated from the direction of the constellation Gemini. This spot in the sky also happens to be exactly where astronomers would expect objects to come from if they were nudged by Scholz’s star during its close pass 70,000 years ago.“Using numerical simulations, we have calculated the radiants, or positions in the sky, from which all these hyperbolic objects seem to come,” said lead author Carlos de la Fuente Marcos, an astronomer at the Complutense University of Madrid, in a statement “In principle, one would expect those positions to be evenly distributed in the sky, particularly if these objects come from the Oort Cloud; however, what we find is very different: a statistically significant accumulation of radiants,” he said. “The pronounced over-density appears projected in the direction of the constellation of Gemini, which fits the close encounter with Scholz’s star.”

itty53 on March 27th, 2018 at 22:49 UTC »

Dozens sounds really really small. If it only affected dozens of say, Oort belt objects, none would've likely hit a planet.

Note, I'm a redditor. I didn't read the article.

helpinghat on March 27th, 2018 at 22:36 UTC »

How bright would the star have appeared in the night sky? Is the illustration in the article accurate in that respect?

The_Write_Stuff on March 27th, 2018 at 22:36 UTC »

I want to know if a nomadic star could just wander into our solar system?