Environmental Health Perspectives – Lifelong Residential Exposure to Green Space and Attention: A Population-based Prospective Study

Authored by ehp.niehs.nih.gov and submitted by Wagamaga
image for Environmental Health Perspectives – Lifelong Residential Exposure to Green Space and Attention: A Population-based Prospective Study

Payam Dadvand,1,2,3 Christina Tischer,1,2,3 Marisa Estarlich,3,4 Sabrina Llop,3,4 Albert Dalmau-Bueno,1,2,3,5 Monica López-Vicente,1,2,3 Antònia Valentín,1,2,3 Carmen de Keijzer,1,2,3 Ana Fernández-Somoano,3,6 Nerea Lertxundi,7,8 Cristina Rodriguez-Dehli,9 Mireia Gascon,1,2,3 Monica Guxens,1,2,3,10 Daniela Zugna,11 Xavier Basagaña,1,2,3 Mark J. Nieuwenhuijsen,1,2,3 Jesus Ibarluzea,3,7,8,12 Ferran Ballester,3,4 and Jordi Sunyer1,2,3,13

Note to readers with disabilities: EHP has provided a 508-conformant table of contents summarizing the Supplemental Material for this article (see below) so readers with disabilities may determine whether they wish to access the full, nonconformant Supplemental Material. If you need assistance accessing journal content, please contact [email protected] . Our staff will work with you to assess and meet your accessibility needs within 3 working days. Supplemental Table of Contents PDF (54 KB)

Note to readers with disabilities: EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact [email protected] . Our staff will work with you to assess and meet your accessibility needs within 3 working days.

In a previous study of 2,593 children attending primary school in Barcelona ( Dadvand et al. 2015a ), exposure to surrounding greenness at enrollment was associated with greater progress in working memory and attention over a 12-mo period. However, children were evaluated at 7–10 years of age, after substantial cognitive development had already occurred, and we were not able to account for exposures during prenatal and early postnatal periods of rapid brain development that may be especially vulnerable to effects of environmental exposures ( Grandjean and Landrigan 2014 ). Therefore, the aim of the present study was to evaluate longitudinal associations between lifelong residential exposure to greenness, including exposure during prenatal and early postnatal periods, and measures of attention during preschool and at 7 y of age.

Study Population Our study was based on data from two well-established population-based birth cohorts that are part of the INMA (INfancia y Medio Ambiente; Childhood and Environment) network of birth cohorts in Spain. The overall goals of INMA are to identify biological, social, and environmental determinants of normal and abnormal growth, development, and health, from fetal life to adulthood (Guxens et al. 2012). The Sabadell and Valencia INMA cohorts are located in northeastern and eastern Spain, respectively. Both locations have a Mediterranean climate characterized by hot and dry summers, mild and rainy winters, and maximum vegetation between autumn and spring. The data was collected prospectively during 2003–2013 for these two cohorts using the INMA common protocol (Guxens et al. 2012). Briefly, pregnant women who fulfilled the inclusion criteria [age ≥16 y, singleton pregnancy, no use of assisted reproductive techniques, intention to deliver at the reference hospital, and ability to speak and understand Spanish or a local language (e.g., Catalan)] were recruited during the first trimester of pregnancy at primary healthcare centers or public hospitals. A baseline survey was performed at enrollment (approximately 12 wk of pregnancy), and follow-up surveys were performed at 20 and 32 wk of pregnancy, at birth, and when children were 6 mo, 1 y, 2 y, 4 y, or 5 y (in Sabadell and Valencia, respectively), and 7 y of age. Additional information on the cohorts and data collection has been published elsewhere (Guxens et al. 2012). All participants gave written informed consent before enrollment in the cohorts. Each cohort obtained ethical approval from the ethical committee in its corresponding region.

Residential Surrounding Greenness The assessment of residential surrounding greenness was based on two satellite-based indices of greenness: a) Normalized Difference Vegetation Index (NDVI) an indicator of greenness including all types of vegetation and b) Vegetation Continuous Fields (VCF), an indicator of tree canopy cover. NDVI is based on land surface reflectance of visible (red) and near-infrared parts of spectrum (Weier 2011). Its values range between −1 and 1, with higher numbers indicating more greenness and negative values indicating water bodies, snow, and barren areas of rock and sand. VCF indicates the percentage of land (in each image pixel) covered by the woody vegetation with a height greater than five meters (Sexton et al. 2013). To develop NDVI and VCF maps for our study regions, we used Landsat data at 30 m×30 m resolution as detailed in Supplemental Materials (see Table S1 and Figures S1 and S2). For each participant, we derived estimates of residential surrounding greenness (NDVI) and residential surrounding tree cover (VCF) within 100 m, 300 m, and 500 m buffer areas(representing immediate, intermediate, and neighborhood areas, respectively) surrounding the residential address at birth, at the 4–5 y follow-up, and at the 7-y follow-up, resulting in 18 estimates (3 time points×3 buffers×2 indices) for (Dadvand et al. 2012, 2014, 2015a, 2016). For each greenness index and buffer area, we derived lifelong exposure estimates at 4–5 y [the mean value of the index at birth, and at 4- or 5-y (for the Sabadell and Valencia cohorts, respectively)] and at 7 y (the mean value of the index at birth, 4–5 y, and 7-y).

Assessment of Attention We used two computer-based tests to assess attention in INMA children: Conners’ Kiddie Continuous Performance Test (K-CPT) at 4 y of age for the Sabadell cohort and at 5 y of age for the Valencia cohort and Attentional Network Task (ANT) at 7 y of age for both cohorts. The K-CPT. The K-CPT (K–CPT™ v.5) is designed to characterize attention in children aged 4 to 7 y (Conners 2000). The K-CPT has been demonstrated to be a valid tool to characterize attention in comparison with clinical (Epstein et al. 2003; Homack and Riccio 2006) and parental evaluations (Barnard et al. 2015). To conduct this task, children were instructed to press the space bar when they saw any image on the computer screen except a ball. Three main outcomes of the K-CPT were used in our analyses: a) omission errors (e.g., the child failed to respond when she or he should); b) commission errors (e.g., the child responded when she or he should not); and c) hit reaction time–standard error (HRT-SE) (SE of RT for correct responses), a measure of response speed consistency throughout the test (Conners and Staff 2000). A higher HRT-SE indicates highly variable reactions related to inattentiveness. The ANT. The ANT is a task developed to assess attention in subjects older than 6 y (Rueda et al. 2004). To perform this test, children were asked to press the left or right key on the computer mouse, depending on whether the centrally located fish in a horizontal row of five yellow fish was pointing to the left or right. As for the K-CPT, we derived counts of omission errors and commission errors, and the HRT-SE, for each participant. We have previously shown that in a sample of ∼2,900 primary schoolchildren in Barcelona, the ANT indicators have statistical dependency with age, school performance, attention deficit/hyperactivity disorder (ADHD) clinical criteria, behavioral problems, and maternal education (Forns et al. 2014).

Statistical Analysis Because of the multilevel nature of the data (i.e., children within cohorts), we used mixed effects models with attentional parameters as outcomes (one parameter for each test at a time), measures of exposure to green spaces (one at a time) as a fixed effect predictor, and the cohort as the random effect. Random intercepts were used to account for clustering of subjects into cohorts (Chu et al. 2011). For commission and omission errors (count data), we developed negative binomial mixed effects models and for HRT-SE (continuous data), we developed linear mixed effects models. The regression coefficients of negative binomial models were exponentiated to obtain mean ratios. Separate sets of models were developed for K-CPT and ANT with 4- or 5-year exposure measures being used for K-CPT analyses and 7-y exposure for ANT analyses. All models were further adjusted for the following covariates identified a priori: age (at the time of 4- or 5-y follow-up for the K-CPT analyses and at the time of 7-y follow-up for the ANT analyses), sex, preterm birth (<37 weeks of gestation, yes/no), maternal cognitive performance [assessed at 4- or 5-y follow-up, using the Wechsler Adult Intelligence Scale (WAIS-IV) Similarities subscale, one of four subscales used to measure verbal comprehension], maternal smoking during pregnancy (yes/no), and exposure to environmental tobacco smoke (smoking by any resident of the child’s home at 4-y follow-up for the K-CPT analyses and at 4- or 5-y as well as 7-y follow-ups for the ANT analyses, yes/no). In addition, we adjusted for maternal educational attainment at enrollment (none or primary school only, secondary school only, or university) as an indicator of individual-level socioeconomic status (SES), and for the Urban Vulnerability Index (Spanish Ministry of Public Works 2012), a measure of neighborhood SES, at each census tract (using the address at the time of outcome assessment), as an indicator of area-level SES. We estimated the difference in average outcome scores associated with one interquartile range (IQR) increase (based on all study participants) in average lifetime NDVI or VCF at 4–5 y or 7 y.

RedSquirrelFtw on November 26th, 2017 at 03:12 UTC »

I guess "green space" is something that is easy to take for granted when you don't live in a concrete jungle. I can just step outside and be in green space more or less and even see stars at night and occasionally northern lights. Walk a couple blocks and I can be in a nature trail.

It's sad to think though that as population continues to grow this will become less and less the norm.

veganinromania on November 25th, 2017 at 19:27 UTC »

There's a nice way to describe this, but it's not entirely accurate: https://en.wikipedia.org/wiki/Nature_deficit_disorder (it is not a disorder, at least not yet)

cerka on November 25th, 2017 at 18:26 UTC »

Is causality established so that we can call it an effect? I imagine there’s a correlation between family background and access to green spaces.

An interesting finding either way.