Fungal Toxins Easily Become Airborne, Creating Potential Indoor Health Risk

Authored by asm.org and submitted by mvea

Washington, DC – June 23, 2017 – Toxins produced by three different species of fungus growing indoors on wallpaper may become aerosolized, and easily inhaled. The findings, which likely have implications for “sick building syndrome,” were published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

“We demonstrated that mycotoxins could be transferred from a moldy material to air, under conditions that may be encountered in buildings,” said corresponding author Jean-Denis Bailly, DVM, PhD, Professor of Food Hygiene, National Veterinary School of Toulouse, France. “Thus, mycotoxins can be inhaled and should be investigated as parameters of indoor air quality, especially in homes with visible fungal contamination.”

The impetus for the study was the dearth of data on the health risk from mycotoxins produced by fungi growing indoors. (image: microscopic view of a sporulating Aspergillus, showing numerous light spores that can be easily aerosolized and inhaled together with mycotoxins. credit: Sylviane Bailly.)

In the study, the investigators built an experimental bench that can simulate an airflow over a piece of contaminated wall paper, controlling speed and direction of the air. Then they analyzed the resulting bioaerosol.

“Most of the airborne toxins are likely to be located on fungal spores, but we also demonstrated that part of the toxic load was found on very small particles—dust or tiny fragments of wallpaper, that could be easily inhaled,” said Bailly..

The researchers used three fungal species in their study: Penicillium brevicompactum, Aspergillus versicolor, and Stachybotrys chartarum. These species, long studied as sources of food contaminants, also “are frequent indoor contaminants,” said Bailly. He noted that they produce different mycotoxins, and their mycelia are different from one another, likely leading to differences in the quantity of mycotoxins they loft into the air. (Mycelia are the thread-like projections of fungi that seek nutrition and water from the environment.)

The findings raised two new scientific questions, said Bailly. First, “There is almost no data on toxicity of mycotoxins following inhalation,” he said, noting that most research has focused on such toxins as food contaminants.

Second, the different fungal species put different quantities of mycotoxins in the air, “probably related to mycelium organization,” but also possibly related to the mechanisms by which mycotoxins from different fungi become airborne—for example via droplets of exudate versus accumulation in spores. Such knowledge could help in prioritizing those species that may be of real importance in wafting mycotoxins, he said.

Bailly noted that the push for increasingly energy efficient homes may aggravate the problem of mycotoxins indoors. Such homes “are strongly isolated from the outside to save energy,” but various water-using appliances such as coffee makers “could lead to favorable conditions for fungal growth,” he said.

“The presence of mycotoxins in indoors should be taken into consideration as an important parameter of air quality,” Bailly concluded.

The American Society for Microbiology is the largest single life science society, composed of over 50,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

ToTheMax1155 on June 25th, 2017 at 16:38 UTC »

As a Bricklayer in germany that's something we actually learn in school. "Zwangslüftung", forced ventilation freely translated, is an important part of the design and construction of houses nowadays. Also the influence of pretty much all kind of fungi are taught, though the general thing we take away from it is "ventilation is very important, fungi make you sick." That was 5 years ago.

DonLaFontainesGhost on June 25th, 2017 at 15:13 UTC »

"Sick building syndrome" is fascinating. The theory is that as building methods and windows have improved, we've sealed houses tight. In the past, air would move freely in and out of a house; now it's pretty much a closed box.

So the idea of "sick house syndrome" is that all the toxins given off by various crap inside the house aren't ventilated out.

In Virginia there's a zoning requirement for every home to have an 18" fresh air intake into the HVAC system to compensate for this.

So since we've sealed houses too tightly, drill a hole in the side.

mvea on June 25th, 2017 at 11:34 UTC »

Journal Reference:

Brankica Aleksic et al.

Aerosolization of mycotoxins after growth of toxinogenic fungi on wallpaper.

Applied and Environmental Microbiology, June 2017

DOI: 10.1128/AEM.01001-17

Link: http://aem.asm.org/content/early/2017/06/05/AEM.01001-17

Abstract:

Many fungi can develop on building material in indoor environments if moisture is high enough. Among species that are frequently observed, some are known to be potent mycotoxin producers. This presence of toxinogenic fungi in indoor environments raises the question of the possible exposure of occupants to these toxic compounds by inhalation after aerosolization.

This study investigated the mycotoxin production by Penicillium brevicompactum, Aspergillus versicolor and Stachybotrys chartarum during their growth on wallpaper and the possible subsequent aerosolization of produced mycotoxins from contaminated substrates.

We demonstrated that mycophenolic acid, sterigmatocystin and macrocyclic trichothecenes (sum of 4 major compounds) could be produced at levels of 1.8, 112.1 and 27.8 mg/m2, respectively on wallpaper. Moreover, part of the produced toxins could be aerosolized from substrate. The propensity to aerosolization differed according to the fungal species. Thus, particles were aerosolized from wallpaper contaminated with P. brevicompactum when air velocity of just 0.3 m/s was applied, where S. chartarum required air velocity of 5.9 m/s. A versicolor was intermediate since aerosolization occurred under air velocity of 2 m/s.

Quantification of the toxic content revealed that toxic load was mostly associated with particles of size equal or higher of 3 μm, which may correspond to spores. However, some macrocyclic trichothecenes (especially satratoxin H and verrucarin J) can also be found on smaller particles that can penetrate deeply in the respiratory tract upon inhalation. These elements are important for risk assessment related to mouldy environments.

IMPORTANCE The possible colonisation of building material by toxinogenic fungi in case of moistening raises the question of the subsequent exposure of occupants to aerosolized mycotoxins. In this study, we demonstrated that three different toxinogenic species produce mycotoxins during their development on wallpaper. These toxins can subsequently be aerosolized, at least partly, from mouldy material. This transfer to air requires air velocities that can be encountered in « real life conditions » in buildings. The most part of the aerosolized toxic load is found in particles whose size corresponds to spores or mycelium fragments. However, some toxins were also found on particles smaller than spores that are easily respirable and can deeply penetrate into human respiratory tract. All these data are important for risk assessment related to fungal contamination of indoor environments.