Expert Alert: Keep exercising: New study finds it’s good for your brain’s gray matter

Authored by newsnetwork.mayoclinic.org and submitted by mvea
image for Expert Alert: Keep exercising: New study finds it’s good for your brain’s gray matter

ROCHESTER, Minn. — Cardiorespiratory exercise — walking briskly, running, biking and just about any other exercise that gets your heart pumping — is good for your body, but can it also slow cognitive changes in your brain?

A study in Mayo Clinic Proceedings from the German Center for Neurodegenerative Diseases provides new evidence of an association between cardiorespiratory fitness and brain health, particularly in gray matter and total brain volume — regions of the brain involved with cognitive decline and aging.

Brain tissue is made up of gray matter, or cell bodies, and filaments, called white matter, that extend from the cells. The volume of gray matter appears to correlate with various skills and cognitive abilities. The researchers found that increases in peak oxygen uptake were strongly associated with increased gray matter volume.

The study involved 2,013 adults from two independent cohorts in northeastern Germany. Participants were examined in phases from 1997 through 2012. Cardiorespiratory fitness was measured using peak oxygen uptake and other standards while participants used an exercise bike. MRI brain data also were analyzed.

The results suggest cardiorespiratory exercise may contribute to improved brain health and decelerate a decline in gray matter. An editorial by three Mayo Clinic experts that accompanies the Mayo Clinic Proceedings study says the results are "encouraging, intriguing and contribute to the growing literature relating to exercise and brain health."

Ronald Petersen, M.D., Ph.D., a Mayo Clinic neurologist and first author of the editorial, says the most striking feature of the study is the measured effect of exercise on brain structures involved in cognition, rather than motor function. "This provides indirect evidence that aerobic exercise can have a positive impact on cognitive function in addition to physical conditioning," he says. "Another important feature of the study is that these results may apply to older adults, as well. There is good evidence for the value of exercise in midlife, but it is encouraging that there can be positive effects on the brain in later life as well."

Dr. Petersen is the Cora Kanow Professor of Alzheimer's Disease Research and the Chester and Debbie Cadieux Director of the Mayo Clinic Alzheimer's Disease Research Center.

The study's finding of higher gray matter volume associated with cardiorespiratory exercise are in brain regions clinically relevant for cognitive changes in aging, including some involved in Alzheimer's disease. The editorial calls those associations interesting but cautions against concluding that cardiorespiratory fitness correlations would affect Alzheimer's disease.

"This is another piece of the puzzle showing physical activity and physical fitness is protective against aging-related cognitive decline," says Michael Joyner, M.D., a Mayo Clinic anesthesiologist and physiologist, and editorial co-author. "There's already good epidemiological evidence for this, as well as emerging data showing that physical activity and fitness are associated with improved brain blood vessel function. This paper is important because of the volumetric data showing an effect on brain structure."

Dr. Joyner is the Frank R. and Shari Caywood Professor at Mayo Clinic.

Long-term studies on the relationship between exercise and brain health are needed, which will be costly and logistically challenging to produce. "Nevertheless, these data are encouraging," says Clifford Jack Jr., M.D., a Mayo Clinic neuroradiologist and co-author of the editorial. "The findings regarding cardiorespiratory fitness and certain brain structures are unique."

Dr. Jack is the Alexander Family Professor of Alzheimer's Disease Research.

According to Mayo Clinic experts, moderate and regular exercise — about 150 minutes per week — is recommended. Good cardiorespiratory fitness also involves:

Losing weight or maintaining a healthy weight level

Managing blood pressure and avoiding hypertension

Reducing blood sugar, which over time can damage your heart and other organs

University Medicine Greifswald, Germany, also was part of the research project. Katharina Wittfeld, Ph.D., a researcher at the German Center for Neurodegenerative Disease, is first author.

Mayo Clinic Proceedings is a monthly peer-reviewed medical journal that publishes original articles and reviews dealing with clinical and laboratory medicine, clinical research, basic science research, and clinical epidemiology. Mayo Clinic Proceedings is sponsored by the Mayo Foundation for Medical Education and Research as part of its commitment to physician education. It publishes submissions from authors worldwide. The journal has been published for more than 90 years and has a circulation of 127,000.

Mayo Clinic is a nonprofit organization committed to innovation in clinical practice, education and research, and providing compassion, expertise and answers to everyone who needs healing. Visit the Mayo Clinic News Network for additional Mayo Clinic news and An Inside Look at Mayo Clinic for more information about Mayo.

Shrp91 on January 3rd, 2020 at 14:26 UTC »

These studies tend to focus on cardiovascular fitness. Has there ever been correlation shown between strength training and increases to grey matter?

BlazedFire on January 3rd, 2020 at 13:36 UTC »

ELI5 what is gray matter?

mvea on January 3rd, 2020 at 11:26 UTC »

The title of the post is a copy and paste from the title, second and fifth paragraphs of the linked academic press release here:

Keep exercising: New study finds it’s good for your brain’s gray matter

A study in Mayo Clinic Proceedings from the German Center for Neurodegenerative Diseases provides new evidence of an association between cardiorespiratory fitness and brain health, particularly in gray matter and total brain volume — regions of the brain involved with cognitive decline and aging.

The results suggest cardiorespiratory exercise may contribute to improved brain health and decelerate a decline in gray matter.

Journal Reference:

Cardiorespiratory Fitness and Gray Matter Volume in the Temporal, Frontal, and Cerebellar Regions in the General Population

Wittfeld, Katharina et al.

Mayo Clinic Proceedings, Volume 95, Issue 1, 44 - 56

Link: https://www.mayoclinicproceedings.org/article/S0025-6196(19)30522-1/fulltext

DOI: https://doi.org/10.1016/j.mayocp.2019.05.030

Abstract

Objective

To analyze the association between cardiorespiratory fitness (CRF) and global and local brain volumes.

Participants and Methods

We studied 2103 adults (21-84 years old) from 2 independent population-based cohorts (Study of Health in Pomerania, examinations from June 25, 2008, through September 30, 2012). Cardiorespiratory fitness was measured using peak oxygen uptake (VO2peak), oxygen uptake at the anaerobic threshold (VO2@AT), and maximal power output from cardiopulmonary exercise testing on a bicycle ergometer. Magnetic resonance imaging brain data were analyzed by voxel-based morphometry using regression models with adjustment for age, sex, education, smoking, body weight, systolic blood pressure, glycated hemoglobin level, and intracranial volume.

Results

Volumetric analyses revealed associations of CRF with gray matter (GM) volume and total brain volume. After multivariable adjustment, a 1–standard deviation increase in VO2peak was related to a 5.31 cm³ (95% CI, 3.27 to 7.35 cm³) higher GM volume. Whole-brain voxel-based morphometry analyses revealed significant positive relations between CRF and local GM volumes. The VO2peak was strongly associated with GM volume of the left middle temporal gyrus (228 voxels), the right hippocampal gyrus (146 voxels), the left orbitofrontal cortex (348 voxels), and the bilateral cingulate cortex (68 and 43 voxels).

Conclusion

Cardiorespiratory fitness was positively associated with GM volume, total brain volume, and specific GM and white matter clusters in brain areas not primarily involved in movement processing. These results, from a representative population sample, suggest that CRF might contribute to improved brain health and might, therefore, decelerate pathology-specific GM decrease.