Building a better salt trap: IU researchers synthesize a molecular 'cage' to trap chloride: News at IU: Indiana University

Authored by news.iu.edu and submitted by mvea

BLOOMINGTON, Ind. -- Indiana University researchers have created a powerful new molecule for the extraction of salt from liquid. The work has the potential to help increase the amount of drinkable water on Earth.

View print quality image Yun Liu holds a 3D-printed model of the chloride-capture molecule. Photo by Fred Zwicky, University of Illinois at Urbana-Champaign

Built using chemical bonds previously regarded as too weak, the new molecule is about 10 billion times improved compared to a similar structure created over a decade ago at IU. The molecule's design is reported today in the journal Science. "If you were to place one-millionth of a gram of this molecule in a metric ton of water, 100 percent of them will still be able to capture a salt," said Yun Liu, who led the study as a Ph.D. student in the lab of Amar Flood, the James F. Jackson Professor of Chemistry and Luther Dana Waterman Professor in the IU Bloomington College of Arts and Sciences' Department of Chemistry. The molecule is designed to capture chloride, which is formed when the element chlorine pairs with another element to gain an electron. The most familiar chloride salt is sodium chloride, or common table salt. Other chloride salts are potassium chloride, calcium chloride and ammonium chloride. At the same time that the human population continues to grow, the seepage of salt into freshwater systems is reducing access to drinkable water across the globe. In the U.S. alone, the U.S. Geological Survey estimates about 272 metric tons of dissolved solids, including salts, enter freshwater streams per year. Contributing factors include the chemical processes involved in oil extraction, the use of road salts and water softeners, and the natural weathering of rock. It only takes one teaspoon of salt to permanently pollute five gallons of water.

View print quality image A computer-generated image of the six-triazole molecule. Image by Yun Liu, University of Illinois at Urbana-Champaign

The new salt-extraction molecule created at IU is composed of six triazole "motifs" -- five-membered rings composed of nitrogen, carbon and hydrogen -- which together form a three-dimensional "cage" perfectly shaped to trap chloride. In 2008, Flood's lab created a two-dimensional molecule, shaped like a flat doughnut, that used four triazoles. The two extra triazoles give the new molecule its three-dimensional shape and 10 billionfold boost in efficacy. The molecule is also unique because it binds chloride using carbon-hydrogen bonds, previously regarded as too weak to create stable interactions with chloride compared to the traditional use of nitrogen-hydrogen bonds. Despite expectations, the researchers found that the use of triazoles created a cage so rigid as to form a vacuum in the center, which draws in chloride ions. By contrast, cages with nitrogen-hydrogen bonds are often more flexible, and their vacuum-like center needed for chloride capture requires energy input, lowering their efficiency compared to a triazole-based cage. "If you were to take our molecule and stack it up against other cages that use stronger bonds, we're talking many orders of magnitude of performance increase," Flood said. "This study really shows that rigidity is underappreciated in the design of molecular cages."

View print quality image Amar Flood. Photo by Eric Rudd, Indiana University

kat_fud on May 25th, 2019 at 12:53 UTC »

So, after this molecule captures the salt, what then? Does it precipitate out of solution? What do you do with it afterward? Can it be recycled somehow? How much does it cost to make?

gotothis on May 25th, 2019 at 12:29 UTC »

Can someone ELI5 "If you were to place one-millionth of a gram of this molecule in a metric ton of water, 100 percent of them will still be able to capture a salt,” Does this amount of the molecule make a metric ton of salt water into fresh?

mvea on May 25th, 2019 at 11:39 UTC »

The title of the post is a copy and paste from the first two paragraphs of the linked academic press release here:

Indiana University researchers have created a powerful new molecule for the extraction of salt from liquid. The work has the potential to help increase the amount of drinkable water on Earth.

Built using chemical bonds previously regarded as too weak, the new molecule is about 10 billion times improved compared to a similar structure created over a decade ago at IU.

Journal Reference:

Chloride capture using a C–H hydrogen bonding cage

BY YUN LIU, WEI ZHAO, CHUN-HSING CHEN, AMAR H. FLOOD

Science 23 May 2019: eaaw5145

Link: https://science.sciencemag.org/content/early/2019/05/22/science.aaw5145

DOI: 10.1126/science.aaw5145

Abstract

Tight binding and high selectivity are hallmarks of biomolecular recognition. Achieving these behaviors with synthetic receptors has usually been associated with OH and NH hydrogen bonding. Contrary to this conventional wisdom, we designed a chloride-selective receptor in the form of a cryptand-like cage using only CH hydrogen bonding. Crystallography showed chloride stabilized by six short 2.7-Å hydrogen bonds originating from the cage’s six 1,2,3-triazoles. Atto-molar affinity (1017 M–1) was determined using liquid-liquid extractions of chloride from water into nonpolar dichloromethane solvents. Controls verified the additional role of triazoles in rigidifying the 3D structure to effect recognition affinity and selectivity: Cl– > Br– > NO3– > I–. This cage shows anti-Hofmeister salt extraction and preliminary corrosion inhibition.