Running in highly cushioned shoes increases leg stiffness and amplifies impact loading

Authored by nature.com and submitted by jq1984_is_me
image for Running in highly cushioned shoes increases leg stiffness and amplifies impact loading

Our results demonstrate that running in highly cushioned MAX shoes amplifies rather than attenuates impact loading, as both the IP and LR increased relative to that in the CON shoes, at a running speed of 14.5 km/h. However, the MAX shoes had smaller effects on impact loading at the slower speed (10 km/h), since only the IP slightly increased compared to running with CON shoes. Our finding of greater impact loading when running in shoes with maximalist cushion conflicts with common assumptions27 that additional cushioning should decrease impact loads. Several studies10,11,12,13 have also noted a slight increase in IP and LR for runners in shoes with a compliant versus a hard midsole, but a mechanistic explanation for this phenomenon has remained poorly understood.

A possible reason for the increased IP and LR for MAX shoes may be the fact that we observed significant differences in the spring-like running mechanics between the MAX and CON shoes. Notably, we found that when wearing MAX shoes, the runners’ legs became stiffer due to lower compression compared to runners wearing CON shoes. The stiffer leg during the landing phase in MAX shoes can diminish the impact attenuation effect gained from the additional cushioning by decelerating the body’s entire mass more rapidly as compared to more compliant landing with CON shoes. Adjustments in leg stiffness when wearing MAX shoes align with those seen when runners transition from a hard surface to a more compliant surface22,23, suggesting a similar adaptation mechanism to maintain the preferred body CoM support mechanics.

Running with MAX shoes also altered the peak vertical force and body’s CoM oscillation relative to running with CON shoes, and unexpectedly, these changes differed at slow and fast running speeds. Thus, although the preferred support mechanics principle22 provides a logical explanation for the observed leg adjustments in the stance phase in MAX shoes, it does not explain why the dynamics of bounce, reflected in peak vertical force and CoM oscillation, was different for runners in MAX shoes at slow versus fast running speeds. Nevertheless, it is reasonable to believe that speed-dependent adaptation to a MAX shoe reflects runners’ tendency to adjust the dynamics of bouncing gait to the shoes’ mechanical characteristics. Although not measured in the present study, higher midsole compliance of the MAX shoe likely resulted in lower natural frequency (i.e. longer midsole compression-recoil time) compared with the CON shoe. This together with the fact that the force-time characteristics of the running gait differ significantly at slow and fast speeds may potentially explain speed-dependent adaptation to a MAX shoe. At the slow running speed, there is a relatively long contact time (i.e. ~0.26 s) available for the runner to apply force on the ground, but at the fast running speed, the runner must apply greater force (~0.3 BW) on the ground over a much shorter time period (i.e., ~0.22 s). The slightly smaller CoM oscillation and consequently lower force application of runners wearing a MAX shoe at slow speeds may be an innate tuning mechanism to restrain the shoe’s midsole compression, which allows the runner to match the shoe midsole compression-recoil timing to that of his spring-like legs. Conversely, the opposite — a slightly increased force application and CoM oscillation — is observed at the faster running speed with MAX shoes, which may reflect a mechanism to limit contact time by speeding up midsole compression-recoil behaviour, enabling a quick transition from braking phase to the propulsion phase. For confirming these theories, we call for further research examining shoe-runner interaction across different running speeds and identify several future directions that can build on our findings.

First, because mechanical shoe characteristics were not measured in this study, it remained unclear how the actual shoe cushion properties differed between NORM and MAX shoes. Therefore, the shoe mechanical testing together with running mechanics data are needed to further elaborate shoe-runner interaction. Second, the body’s CoM vertical displacement was estimated based on the 3D movement data rather than the force plate method28. Although, previous literature29,30 indicate a very good agreement in the CoM movement obtained using the 3D approach and the force plate method, no studies have compared the results of these two techniques when running in shoes with different cushioning properties. Finally, of note is that although our leg stiffness values are well in line with other studies26,30,31 using the direct 3D method, they are generally 25–55% greater than those21,22,23,32 calculated with a traditional spring-mass model19,20. This discrepancy arises primarily from a much lesser leg compression values in studies using the direct 3D method (~7–9 cm) versus those using a traditional spring-mass model (~12–14 cm) rather than differences in the GRF. We believe that the direct 3D method may provide a more accurate representation of the true leg compression, because it avoids assumptions made by a planar spring-mass model19,20 that the leg compression can be estimated from running speed, ground contact time, and leg length at initial contact.

The observed running mechanics adjustments in the present study resolve the shoe cushioning paradox and also point towards importance of speed-specific optimization of the shoe properties in order to improve running injury prevention. Our findings that MAX shoes amplify rather than attenuate impact loads particularly at the faster (14.5 km/h) running speed suggest an increased risk of impact-related injuries compared to CON running shoes at the same speed. On the other hand, we found that MAX shoes little affected impact loading at the slower running speed (10 km/h), which suggests a minor effect on the risk of injuries. Notably, studies examining the relationship between shoe cushioning and injuries8 and impact load magnitude and injuries4 have focused on leisure distance runners, who rarely run at speeds greater than 10 km/h. For example, Theisen et al.8 found similar injury rates in runners who used shoes with soft versus hard midsoles, but the reported mean running speed in both shoe groups was ~9.5 km/h. As a result, a soft versus hard midsole shoes in their study likely had a minimal effect on the impact loading, which can explain similar injury rates between the two shoe groups. Consequently, running speed should be considered in future studies that examine whether the type of shoe cushioning influences running injuries.

dude_42 on December 2nd, 2018 at 18:45 UTC »

Yea I read the whole article and wrote the author. Having done scientific research there a number of things, that I'm surprised made it into nature. One no baseline. He should be compare negative control. Ie barefoot, to other shoes.

Second as pointed out, if he established barefoot, minamilist, conventional, and maximal. It would be way better study.

Third. They didn't define terms but reffered to research papers in terms of shoe stiffness. Not only should these have been listed. But the shoes they used should have also had their properties listed.

The other thing is I'm curious about weight vs impact as you increase cushion you also increase weight, which would be and increase of force. As speed x weight = force.

Lastly maybe this is a nature thing. But why wouldn't you publish the data?

tintagel74 on December 2nd, 2018 at 16:47 UTC »

I've seen a few studies on what might be the best running style/stack height/drop and if there is one thing that is crystal clear, it is that nothing is crystal clear.

Instinctively I understand the logic behind minimalist shoes and I also understand the logic behind maximal shoes. I understand the logic behind zero/low drop shoes and I understand the logic behind higher drop shoes (much less so for this tbh). I understand the thoughts behind why heel striking is bad and I understand the thoughts behind why not messing with your natural gait is preferable.

This study MAY be useful but as has been pointed out both shoes are well cushioned and both have different heel toe drops. It just seems to muddy the water more.

mr_dogbot on December 2nd, 2018 at 14:13 UTC »

This study compares a highly cushioned shoe (Hoka) against a very-well cushioned shoe (Brooks Ghost). This isn't a comparison of high-cushion versus minimal, this is a comparison of high-cushion versus almost-high-cushion. This study provides no evidence in favor of minimal footwear.